
Invision Power Services  
Coding Standards

Version 4.0

Terminology
Throughout this document, the following terms will be used:

MUST / MUST NOT
Indicates that the practice is a requirement and failure to do this shall be considered
to be a bug. In instances where there is a valid technical reason for it not being
possible to do so, this must be discussed internally between all developers and
documented as a comment by the relevant code.

SHOULD / SHOULD NOT
Indicates that the practice is a strong recommendation. In instances where there is
a valid technical reason for it not being possible or feasible due to other
considerations, this should be documented with clear reasoning as a comment by
the relevant code.

MAY
Indicates that a practice is allowed, but optional, and there is no preference as to
doing so or not.

Third party libraries included in our projects are exempt from all standards. 

Your Editor
1. You MUST set your editor settings to the following values and ensure that all

committed code is in line with these settings:
1.1. Text encoding is UTF-8
1.2. All line endings are Unix style (LF)
1.3. Tabs are used to indent code, not spaces

General Standards
1. All pages MUST conform to proper HTTP standards, meaning they MUST:

1. Send an appropriate HTTP response code.
2. Send a HTTP header specifying an appropriate content-type.
3. Send other HTTP headers as necessary depending on the content being displayed

(for example, for pages which are for file downloading, Content-Length will be sent).
2. All functionality MUST work on the following desktop browsers:

1. Internet Explorer 9 and above.
2. Firefox 4 and above.
3. Google Chrome, all versions.
4. Safari 4 and above.
5. Opera 10 and above.

3. All functionality SHOULD work on older versions of the above versions, though a lesser
user experience is acceptable.

4. All functionality MUST work for any resolution above the following values wide,
assuming the browser is using that entire width:
1. For front-end user functionality, 320px
2. For other functionality (control panels, install scripts, etc.), 1280px.

Third-Party Libraries
Third-party libraries included with our projects:

1. MUST be approved by management to ensure their licensing terms are conformed
with.

2. MUST be acknowledged in the Credits.txt file (even if their licensing terms do not
require it).

3. MUST NOT be modified, except through appropriate plugin systems.
4. MUST be updated with security issue fixes (and such instances shall be treated as per

the same procedures if a security vulnerability is found in our own code).
5. SHOULD be updated with bug fixes.
6. To ensure that rules 4 and 5 are adhered to, where the library developer provides a

mailing list to notify of new releases, our “all developer” email address shall be
subscribed.

HTML Standards
1. HTML MUST be valid HTML5. Meaning they MUST:

1. Specify a HTML5 Doctype.
2. Validate as valid markup according to the W3C Markup Validation Service.
3. Use appropriate semantic elements as appropriate (e.g. <header>, <footer>,

<video>, <time>, etc.)
4. Not use self closing tags (i.e.
 not
)

2. HTML MUST specify the UTF-8 character set.
3. HTML MUST NOT include inline CSS or JavaScript, meaning they MUST NOT include:

1. <style> elements
2. Elements with style attributes
3. <script> elements (other than those with a src attribute to point to an external .js file,

or as per JavaScript standards rule 1)
4. Elements with any JavaScript attributes, such as onclick, onload, etc.

4. Rich snippets in the form of microdata SHOULD be used whenever appropriate - see
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=99170 

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=99170

CSS Standards
1. CSS MUST be included in .css files (see HTML Standards rule 2)
2. CSS MUST be valid CSS3 and validate as such according to the W3C CSS Validation

Service.
3. CSS SHOULD be used instead of JavaScript when there is an option as to which

technology can be used (for example, for animations) (see Javascript Standards rule
2).

4. CSS styles SHOULD be placed in modules grouping similar styles.
5. Modules MUST be named using camelCase.
6. All classes and elements SHOULD be named thus:

• One of the following prefixes:
• “ips” for framework classes and elements.
• “c” for other classes.
• “el” for other elements.

• The name of the module.
• Optionally, an underscore and an additional description named using camelCase.
Examples:
• .ipsMenu
• .ipsTabs_item
• #ipsLayout_mainArea
• .ipsComment_hasChildren
• .cUserLink
• #elNewTopic

7. When defining classes, curly braces SHOULD be on the same line as the selector.
8. When defining classes, related styles MAY be indented like so:

#somethingSomething {
background: #fff;
color: #000;

}

#somethingSomething > li {
background: #000;

 color: #fff;
}

JavaScript Standards
1. General

1. JavaScript MUST be included in .js files (see HTML Standards rule 2) except a single
block, within the HTML <head> element, to set variables specific to that session.

2. JavaScript SHOULD NOT be used instead of CSS when there is an option as to which
technology can be used (for example, for animations) (see CSS Standards rule 3).

3. All JavaScript code SHOULD be written using the jQuery library.
4. All JavaScript functionality SHOULD have appropriate fallbacks for users with

JavaScript disabled.
5. When implementing fallbacks for users without JavaScript with regards to AJAX

functionality, the same methods in the PHP code SHOULD be used, distinguishing
between the types by examining the HTTP Accept header sent by the client.

6. JavaScript code SHOULD NOT log anything to the console, unless a variable to enable
logging has been specifically enabled.

7. Variables MUST NOT be leaked into the global scope, unless there is a specific need
(therefore, variables MUST be declared with the var statement).

1. Syntax

9. Each script file MUST be entirely wrapped thus:
;(function($, _, undefined){  

 "use strict";
 // Code goes here  
 }(jQuery, _));
2. JavaScript SHOULD be documented using the JSDoc syntax (http://usejsdoc.org).

Docblock comments SHOULD only be used for JSDoc comments; single-line comments
(//) should be used for other purposes.

3. Semi-colons SHOULD be used at the end of every statement, even when functions/
object literals are being assigned.

4. When assigning values in an object, trailing commas MUST NOT be used.
5. ips.getAjax()(url) SHOULD be used over $.ajax and callbacks SHOULD be

assigned using chained methods over parameters in the data object.
Example:

 ips.getAjax()(url)
 .done(function (response) {
 // Do something with the response
 })
 .fail(function () {
 // There's an error
 });
6. All variable, method, property, etc. names SHOULD be named using camelCase.
7. Lines SHOULD be shorter than 120 characters, splitting immediately after a comma or

operator, indented appropriately.
8. Curly braces SHOULD be on the same line as the statement (not a new line).
9. The left parenthesis SHOULD sit immediately next to the statement except where a

function is being declared.
 if(...
 for(...
 function test (...

http://usejsdoc.org

10.Spaces should surround all parameters inside parenthesis - except when the parameter
is a simple string.

 $('foo');
 $(var);
 $('foo' + 'bar');
11.When using daisy-chaining, each method SHOULD be placed on it’s own line, indented

appropriately. 
Example:

 $(...)
 .find(...)
 .hide()
 .end()
 .find(...)
 .css(...)
 .end()
 .append $(...).attr({
 ...
 });

PHP Standards

1. General

1. PHP files MUST start with <?php on line 1 (short tags MUST NOT be used) unless the
code is intended to be eval’d rather than included, in which case it SHOULD start
with //<?php (so that text editors will use syntax highlighting properly).

2. PHP files MUST NOT end with a closing ?>
3. PHP files MUST NOT contain HTML, CSS or JavaScript code.
4. All used internal PHP functions, classes and features MUST be available on a default,

non-customised version of PHP 5.3.0 except for features specifically only available in
developer mode. Extensions which are enabled by default but may be disabled may be
used, however, extensions which need to be enabled when configuring PHP MUST
NOT be used, except the following extensions which are part of our requirements.
4.1. gd
4.2. mbstring

5. PHP code SHOULD NOT raise any errors, including notices. It is recommended that
you set error reporting to E_ALL.

6. The following functions MUST NOT be used, except for the purposes of upgrading data
from older versions:
6.1. escapeshellarg
6.2. escapeshellcmd
6.3. exec
6.4. ini_alter
6.5. parse_ini_file
6.6. passthru
6.7. pcntl_exec
6.8. popen
6.9. proc_*
6.10. serialize (use a safer encoding function like json_encode/decode instead)
6.11. shell_exec
6.12. show_source
6.13. symlink
6.14. system
6.15. unserialize (use a safer encoding function like json_encode/decode instead)

7. Multibyte functions MUST be used instead of normal string functions where it is
possible that the string will contain multibyte characters.

8. Whenever curly braces are used, the indentation of the code SHOULD increase by one
tab:

 //...

 if (foo)
 {
 //...
 }

 // ...

2. Classes

1. Classes MUST be located in their own file - only one class per file is permitted.
2. Classes MUST be located and named appropriately so as to be autoloaded. This

means:
• In the /system directory for core framework classes.
• In the /sources directory of an application for classes belonging to that application.
• In the /modules_* directories of an application for controllers.
• In the /extensions directory of an application for extensions.

3. Classes MUST be prefixed with an underscore so they can be extended by the hooks
system.

4. Classes SHOULD be declared abstract where appropriate.
5. Classes MUST only be named with alphabetic characters, using PascalCase. Class

names MUST NOT contain numbers or underscores (other than the initial underscore).
6. Classes MUST contain at least one non-static method, unless it is defined as abstract.

Classes MUST NOT be used as generic containers for methods (such as with the
IPSLib class in IP.Board 3).

7. Classes MUST contain at least one non-abstract method (otherwise an interface
should be used).

8. The class declaration SHOULD be all on one line, except in cases where the
declaration is very long, in which case, linebreaks may be used to separate the parent
class and each interface, using tabs to indent like so:

 class _MyClass
 extends someOtherClass
 implements anInterface,
 anOtherInterface
 {
9. The curly braces SHOULD be defined on their own lines, with the starting brace on the

line immediately following the declaration, except if the class has no contents, in which
case they may be on the same line separated by a space:

 class _MyEmptyClass { }

Example declaration: 

 abstract class _MyClass extends \IPS\Foo\Bar
 {
 //...
 }

3. Functions and Methods

1. Functions Methods MUST only be named with alphabetic characters (and underscores
as per rules 2 and 3), using camelCase.

2. Function and Method names MUST NOT start with a double underscore except for
magic methods.

3. Function and Method names MUST NOT contain an underscore except for:
• Getters and setters which should be named get_*() and set_*() and may contain

underscores if the property name contains underscores (for example, if the class is
an Active Record, the property names will contain underscores as per SQL
Standards).

• Methods within controllers which should not be executed automatically if the “do”
parameter matches the method names. In this case, the method name should begin
with a single underscore.

4. Methods MUST declare their visibility, but MUST NOT be declared private as it
interferes with the usage of hooks.

5. Abstract methods SHOULD be declared where appropriate.
6. If it is desired for a hook to not be able to override a method, it SHOULD be declared

final.
7. As with classes, the curly braces SHOULD be defined on their own lines, with the

starting brace on the line immediately following the declaration, except if the function or
method has no contents, in which case they may be on the same line separated by a
space, or if the function or method has lots of arguments as per rule 9.7.

8. Pass-by-reference is allowed in the method declaration, but call-time pass-by-reference
MUST NOT be used.

9. Arguments SHOULD be declared with:
9.1. One space (or linebreak and tabs as per rule 9.7) after the opening parenthesis,

unless there are no arguments.
9.2. No whitespace before the opening parenthesis.
9.3. Once space (or linebreak and tabs as per rule 9.7) before the closing

parenthesis, unless there are no arguments.
9.4. One space (or linebreak and tabs as per rule 9.7) after each comma.
9.5. No whitespace between the argument name, the assignment operator and the

default value.
9.6. No whitespace between the pass-by-reference operator and the argument.

 public function myFunction($foo, &$bar, $baz=NULL)
 public function myFunction()

9.7. For methods that accept a large number of arguments, the declaration SHOULD
be broken into multiple lines, putting each argument on it’s own line. In this case
the curly brace SHOULD go on the same line as the closing parenthesis:

 public function myFunction(
 $foo,
 &$bar,
 $baz=NULL
) {
10.Type-hinting SHOULD NOT be used.

4. Properties and Variables

1. Properties and variables MUST only contain alphanumerical characters, (and
underscores as per rule 2), using camelCase where appropriate.

2. Properties and variables MUST NOT contain underscores, except for properties in a
class which uses getter and setter methods (for example, an Active Record), in which
case, properties which are outside the scope of the getters and setters may start with
an underscore to prevent conflicts.

3. Properties MUST NOT be declared private as it interferes with the usage of hooks.
4. When assigning a variable, there SHOULD be a single space either side of the

assignment operator, or, if defining more than one variable, tabs instead of the space
before the assignment operator to align the assignment operator on each line:

 $var = 'foo';

 $var1 = 'foo';

 $var2 = 'foo';
5. When casting a variable, there SHOULD be no spaces in the parentheses, and a

single space between the case and the variable:
$var = (string) $var;

6. When casting a variable to a type which can be cast by more than one keyword, the
following SHOULD be used:
6.1. int, not integer
6.2. bool, not boolean
6.3. float, not double or real

7. Properties SHOULD specify a default value (even if it is NULL).

5. Constants

1. Constants (both class constants and namespace constants) MUST be in
SCREAMING_SNAKE_CASE.

2. Constants MUST not be declared in the global namespace.
3. When using PHP’s internal constants which can be used in upper or lowercase (for

example, NULL, TRUE, FALSE), uppercase SHOULD be used.

6. Interfaces

1. Interfaces SHOULD only be used when an abstract class is not appropriate.
2. Interfaces MUST follow all the same naming conventions as classes.

7. Strings

1. Strings SHOULD use single-quotes where there is no variable substitution and the
string does not contain apostrophes. It is preferential to use double-quotes when the
string contains apostrophes rather than escaping them because it’s easier to read.

2. Variable substitution SHOULD be done using curly braces around the entire variable:-
Correct:
$foo = "bar {$var} baz";
Incorrect:
$foo = "bar $var baz";
$foo = "bar ${var} baz";

3. Where the string concatenation operator is used, it SHOULD be separated with spaces
either side:

 $foo = 'bar' . Class::method() . 'baz';

8. Arrays

1. Arrays SHOULD be declared with one space (or line-break or tabs as per rule-2):
1.1. After the opening parenthesis, unless the array is empty.
1.2. Before the closing parenthesis, unless the array is empty.
1.3. After each comma.
1.4. Either side of the fat comma.

 $array = array(1, 2, 3);

 $array = array(1 => 'foo', 2 => 'bar');
 $array = array();
2. For long array declarations, a linebreak SHOULD be used instead of the space for

rules 8.1.1-3, and tabs SHOULD be used instead of the space for rule 8.1.4. When
using tabs, there SHOULD be an appropriate number to align the values, with the
indent increasing with each level of depth in a multi-dimensional array. For each array
within a multi-dimensional arrays, whether to use the syntax in rules 8.1 or 8.2 is
assessed for each individual array.

$array = array(
 'foo' => array(
 'bar' => array('foo', 'bar', 'baz'),
 'baz' => array(
 'foo' => 'foo',
 'bar' => 'bar',
 'baz' => 'baz'
),
),
 'moo' => array(),
);

9. Control Statements

1. Control statements SHOULD have a single space (or line-breaks or tabs as per rule 2):
1.1. After the opening parenthesis
1.2. Before the closing parenthesis
1.3. Either side of all operators within the statement

 if($foo != $bar and $foo != $baz)
2. If the control statement is very large, the control statement SHOULD be broken into

multiple lines as appropriate for the given circumstance.
3. Curly braces MUST be used, even if it is not necessary.
4. As with classes, methods and functions, the curly braces SHOULD be defined on their

own lines, with the starting brace on the line immediately following the declaration.
5. The identical (===) and not identical operators (!==) SHOULD be used instead of the

equal (==) and not equal (!=) operators when appropriate.
6. A control statement SHOULD be declared in such a way that the precedence of

operators is obvious. For example, consider the following statements. Though the first
two produce identical results, and the third will produce something different, one may
not immediately know that without checking the PHP manual. Therefore, the the
second statement should be used instead of the first.

 if ($foo == $bar ?: $baz)
 if ($foo == ($bar ?: $baz))
 if (($foo == $bar) ?: $baz)
7. The logical operators and and or SHOULD be used instead of && and ||. In

circumstances where the precedence of && and || is necessary, it is preferential to use
parenthesis to denote the precedence as per rule 6.

8. The shorthand ternary operator SHOULD be used when appropriate, in which case
there SHOULD be no whitespace between the ? and the :.

9. In switch statements, the break/return statement SHOULD be indented to the same
level of the code (one deeper than the case statement). If there is no need for a break
or return so as to fall through to the next case, a comment indicating this intention
SHOULD be added so there is confusion that the lack of it is a mistake.

PHP Documentation

General

1. Tags SHOULD NOT be used in the documentation which hint at information already
indicated by class or method declarations. This includes, but is not limited to:
1.1. @extends
1.2. @public
1.3. @private
1.4. @protected
1.5. @abstract
1.6. @interface
1.7. @implements

2. Where dates are specified, they SHOULD be specified in the format “j M Y” - e.g. “1
Jan 2000”.

3. Markdown MAY be used in the descriptions.
4. To reference a webpage, a HTML <a> tag SHOULD be used.

File Header

/**
 * @brief Description of file
 * @author Invision
Power Services, Inc.
 * @copyright (c) 2001 - SVN_YYYY Invision Power Services, Inc.
 * @license http://www.invisionpower.com/legal/standards/
 * @package IPS Social Suite
 * @subpackage Application
 * @since 1 Jan 2000
 * @version SVN_VERSION_NUMBER
 */

1. All files MUST start with the above documentation block.
2. The documentation block MUST be on the line immediately following the opening <?

php tag.
3. The @brief tag MUST indicate a description of the file.
4. The @since tag MUST indicate the date the file was created. If a file is being based on

a file from a previous version, that file’s creation date SHOULD be used, unless it is not
known, in which case the date that the new file is being created MUST be used.

5. The @subpackage MUST be one of the following values if the file belongs to an
application (except the “core” application), and MUST NOT if the file belongs to the
system framework, or the core application.
• Blog
• Board (note not “Forums”)
• Chat
• Content
• Downloads
• Gallery

http://www.invisionpower.com
http://www.invisionpower.com/legal/standards/

• Nexus

Classes and Interfaces

/**
 * Class description
 */

1. All classes and interfaces MUST have a documentation block on the line immediately
preceding the declaration.

2. Generally additional tags are not necessary, however, if additional tags are included,
the description MUST start with the @brief tag.

Properties

/**
 * @brief Property description
 */

1. All properties MUST have a documentation block on the line immediately preceding the
declaration containing at least a @brief tag.

Methods

/**
 * Method Description
 *
 * @code
 MyClass:myMethod();
 * @encode
 * @todo Something we need to do
 * @deprecated
 * @note Something to note
 * @see External
Link  
 * @see SomeOtherClass::$someProperty
 * @param string $var1 Description
 * @param string|array $var2 Description
 * @param mixed $var3 Description
 * @throws Exception
 * @li ERROR1
 * @li ERROR2
 * @return void
 */

1. All methods MUST have a documentation block on the line immediately preceding the
declaration containing at least a @return tag.

2. The documentation block MUST specify a description, followed by a blank line, then
the documentation tags. The description MAY span more than one line.

http://www.invisionpower.com

3. The @code tag SHOULD be used to provide a code example of how to use the
method if the documentation block would not otherwise provide enough information, for
example, if a complex array is passed as a parameter. When used, the * is not used at
the beginning of the line.

4. The @deprecated tag SHOULD be used to mark deprecated methods.
5. The @note and @see tags MAY be used to specify additional notes. The @see tag

can either reference an other classes, property or method, or a webpage.
6. The @param tags MUST be in the format specified in the above example.

6.1. The type MUST be specified as either:
6.1.1. A single type, if only a single type should be used.
6.1.2. Multiple types, separated by a pipe, if multiple types (but not all types) may

be used.
6.1.3. The keyword “mixed” if multiple types (including, but not necessarily all

types) may be used and the list would be too long for separating each type
by a pipe would be feasible.

6.2. The pseudo-type “number” MAY be used in place of “int|float”.
6.3. The type SHOULD use the same formatting as PHP Standards Rule 4.6 for

specifying a type which has more than one keyword.
6.4. The variable name MUST be present, and be as it is defined in the declaration.
6.5. The description MUST remain on the same line.

7. If calling the method might call an exception to be thrown by that method, a @throws
tag SHOULD be provided, specifying the name of the exception class which may be
thrown. Where appropriate (i.e. the exception is not dynamically generated or returned
by an API), a list of messages that may be thrown SHOULD be listed using @li tags.

8. The @return tag MUST be specified, even if the method does not return a value, in
which case it should specify “void”.

SQL Standards
1. All used SQL code MUST work on a default, non-customised version of MySQL 5.0.3.
2. All used SQL code MUST work when strict mode is enabled (it is recommended this be

enabled in development).
3. Tables and views MUST be prefixed with the key of the application they belong to.
4. Table, view, column and index names MUST be named using snake_case.
5. New columns MUST:

5.1. Be defined using appropriate datatypes with particular considerations to the
appropriate size and, for numerical values, if UNSIGNED can be used.
Timestamps are exempt from this rule for legacy reasons and must be an integer
rather than DATETIME. 
 
Examples of datatypes you might use are listed below. These examples are
suggestions of what might be appropriate. In practice, the contents of each
column must be considered carefully to decide the best datatype. 

• For boolean values: BIT(1)
• For auto-incrementing ID numbers: BIGINT UNSIGNED
• For content titles: VARCHAR(255)
• For content: LONGTEXT
• For date/times: BIGINT UNSIGNED
• For currencies: DECIMAL(64, 2)
• For multiple possible values: ENUM or SET (we currently do things like use

TINYINT and accept 0, 1, 2 with different meanings - this is incorrect)
• For md5 hashes: CHAR(32) 

5.2. Define whether NULL is permitted or not appropriately (for example, it is not
acceptable for a table that stores content to have a NULL value for the title.
However, it is permitted for the members table to have a NULL value for the
Facebook ID) and make the PHP code use NULL appropriately.

5.3. If NULL is not permitted, define an appropriate default value.
6. Old columns SHOULD be updated to adhere to the standards in rule 5 where it is

feasible. If this is done, the upgrader MUST update existing installations - it is not
acceptable for a new installation and an old upgraded installation to be using different
schemas.

7. Columns should include a comment which explains the usage of that column for the
benefit of other developers.

8. Text columns MUST use the UTF-8 collation.

